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Abstract. In this paper, we study in detail the critical behaviour of theO(n) quantumϕ4-model
with long-range interaction decaying with distancesr by a power law asr−d−σ in the large-n limit.
The zero-temperature critical behaviour is discussed. Its alteration by finite temperature and/or finite
sizes in the space is studied. The scaling behaviours are studied in different regimes depending
upon whether the finite temperature or the finite sizes of the system lead. A number of results for
the correlation length, critical amplitudes and the finite-size shift, for different dimensionalities
between the lowerd< = σ/2 and the upperd> = 3σ/2 critical dimensions, are calculated.

1. Introduction

The vast majority of existing analytical and numerical work on finite-size effects has been in
regimes where the quantum effects are entirely ruled out [1]. In this case both the statics and
the dynamics can be described by classical statistical models. At the critical point the bulk
thermodynamic functions of these models are singular. For these systems the finite-size scaling
theory asserts that the singularities holding at the thermodynamic limit are altered depending
upon the nature of the geometry to which the system is confined and the imposed boundary
conditions [2, 3]. Indeed, various types of geometries can be considered, depending on the
number of the finite sizes in the model.

TheO(n) vector models are extensively used to explore the finite-size scaling theory,
using various methods and techniques. For finiten the most frequently used method is that of
the renormalization group [4]. The most thoroughly investigated case is the one corresponding
to the limitn = ∞ (this limit also includes the mean spherical model) [3]. In this limit, these
models are exactly soluble for arbitrary dimensions and in a general geometry. The majority
of these investigations are limited to systems in which the forces are of short range. To test
the finite-size scaling idea when the interaction is of long range (varying with a power law),
the only model used is the mean spherical model [5].

In recent years there has been increased interest in the theory of zero-temperature quantum
phase transitions [6, 7]. Distinct from temperature-driven critical phenomena, these phase
transitions occur at zero temperature as a function of some non-thermal control parameter (or
as a competition between different parameters describing the basic interaction of the system),
and the relevant fluctuations are of quantum rather than thermal nature. In these types of
critical phenomena time plays a crucial and fundamental role. The coupling of statistics and
dynamics that is inherent to quantum statistical problems introduces effective dimensionalities
in the hyperscaling laws, i.e. the space dimensionalityd is replaced byd + z (z is the dynamic

0305-4470/00/050873+18$30.00 © 2000 IOP Publishing Ltd 873



874 H Chamati and N S Tonchev

critical exponent). In this case the inverse temperature acts as a finite size in the ‘imaginary-
time’ direction for the quantum system at its critical point. This allows the investigation of
scaling laws for quantum systems near the quantum critical point in terms of the theory of finite-
size scaling [8] or using the conformal field theory techniques by mapping the bulk system in a
finite one [9]. TheO(n) symmetric vector models are also used in the exploration of quantum
critical phenomena and for the investigation of the scaling properties of such phase transitions.
The quantization of classicalO(n) is performed with the help of the Trotter formula which
maps the quantum model on a classical one withz additional effective dimensions.

In systems showing quantum critical behaviour the temperature plays two different roles.
For temperatures low enough, quantum effects are essential. In this case the temperature
affects the geometry to which the system is confined adding ‘new’ sizes to the Euclidean
space–time coordinate system. By raising the temperature, the system is driven away from
quantum criticality. At high temperatures, however, the size in the ‘imaginary-time’ direction
becomes irrelevant in comparison with all length scales in the system. In this case we have a
classical system ind dimensions and the temperature is just a coupling constant in the classical
critical behaviour.

In this paper we present a detailed investigation of the scaling properties of the quantum
O(n) vectorϕ4-model with long-range interaction. Our study will include the quantum as
well as the finite-size effects and their influence on the critical behaviour and the critical
amplitudes. We will also check the influence of the interaction range on the critical behaviour.
These interactions enter the exact expressions for the free energy only through their Fourier
transform in which the leading asymptotic isU(q) ∼ qσ

∗
, whereσ ∗ = min(σ, 2) [10]. As

was shown for bulk systems by renormalization group arguments,σ > 2 corresponds to the
case of finite(short)-range interactions, i.e. the universality class then does not depend on
σ [10]. Values satisfying 0< σ < 2 correspond to long-range interactions and the critical
behaviour depends onσ . Following the above reasoning one usually considers the caseσ > 2
as uninteresting for critical effects, even for the finite-size treatments [11]. So, here we will
consider only the case 0< σ 6 2.

The paper is devised as follows. In section 2 we present some predictions which extend
the finite-size scaling to quantum systems. We also discuss the interplay of quantum and
finite-size effects on the quantum critical behaviour. We comment on the anisotropy caused
by the presence of both effects. In section 3 we review, briefly, theϕ4-model with long-
range interaction and present the saddle point equation. We investigate the low-temperature
behaviour of the bulk model in section 4. In section 5, we investigate in detail the finite-
size behaviour at zero temperature. Section 6 is devoted to some comments about the low-
temperature and finite-size effects of the system. In section 7 we discuss our result briefly. In
the remainder of the paper we present some details of the calculations.

2. Finite-size scaling and quantum critical behaviour

Divergent length scales play a crucial role in continuous phase transitions. Unlike classical
models, where the scaling can be done equally for all ‘spatial’ dimensions, quantum models
are anisotropic in general, and therefore the ‘space’ and ‘imaginary-time’ directions will not
scale in the same fashion. According to the general hypothesis of finite-size scaling theory [12]
extended here for a quantum (anisotropic) system, a physical quantityA(r, h, L, T ) (wherer
is the distance from the critical point,h is an ordering field coupled to the order parameter,T

is the temperature andL is the size of the system), which may be singular at the critical point
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in the thermodynamic (bulk) limit at the quantum critical point (r = 0), will scale as

A(r, h, T , L) = bpAs(rb1/ν, hb1/ν, T bz, bL−1). (2.1)

In the scaling form (2.1),p corresponds to the engineering dimensiond +z of the system in the
case where the scaling function refers to the singular part of the free energy, and it is then divided
by ν, the critical exponent measuring the divergence of the bulk thermodynamic functionA at
the critical point for the other physical quantities of interest (for the correlation lengthp = 1,
for the susceptibilityp = γ /ν, etc). Depending upon the choice of the renormalization group
rescaling factorb we obtain different scaling functionsAs , which are related to each other by
some appropriate change of the scaling variables.

Before starting to discuss the general form of the scaling universal functionAs , we will
discuss the two limiting cases which were subjects of several investigations during the past
two decades.

The first case corresponds to zero temperature and is called, hereafter, the quantum critical
behaviour. Here, equation (2.1) reduces to

A(r, h,0, L) = bpALs (rb1/ν, hb1/ν, bL−1). (2.2)

Following [13], we choose the rescaling factorb to be proportional to the linear size of the
system. Then, we obtain

A(r, h,0, L) = LpALs (rL1/ν, hL1/ν). (2.3)

Here the situation resembles that of systems exhibiting classical (thermal) phase transition.
It is possible to get another result for the scaling function in the right-hand side of

equation (2.3) if one considers the variabler̃L1/ν instead of the first variable of the scaling
functionALs . The parameter̃r is introduced in such a way so as to account for the shift of the
critical quantum parameter to the value corresponding to the rounding of the thermodynamic
functions, when the number of infinite dimensionsd ′ is less than its lower critical dimension
d<. For the opposite case we have just a shift of the critical control parameter. In this case we
find that the critical exponents are those of ad ′-dimensional system (see, for example, [2]).
By definition the finite-size shift is given by

r̃ = r + ε(L) lim
L→∞

ε(L) = 0. (2.4)

In general we have

ε(L) ∼ L−1/ν (2.5)

and so this quantity shrinks to zero in the thermodynamic limit. When the arguments of
the scaling functions get replaced by zero, we will obtain universal critical amplitudes,
characterizing the whole class of universality. Here we have to emphasize that the values
of the universal critical amplitudes are different depending upon the point in which they are
calculated, i.e.r or r̃.

The second case we consider is the one corresponding to the bulk system (L = ∞) at
finite temperature. In this case the scaling form (2.1) transforms into (see [7] and references
therein)

A(r, h, T ,∞) = T −p/zAτs (rT −1/zν, hT −1/zν) (2.6)

where we used the relationb = T z between the temperature and the rescaling parameterb.
The same predictions for the shift and the critical amplitudes remain valid here. We find it
convenient to useLτ ∼ T −z as a linear ‘temporal’ size instead of the inverse temperature.

The general case corresponding to both quantum and finite-size effects can be studied by
considering a system with larger dimension,p = d + z, confined to a general geometry of the
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formLp−z × Lzτ [14]. The fact that the inverse temperature can be used as an additional size
in the imaginary-time direction creates some anisotropy in the system. This property will lead
to the establishment of some change in the scaling properties of the finite quantum system.
In the general case we can consider the quantum-to-classical and the finite-size to the bulk
system different crossover phenomena. It is easy to convince oneself about this statement by
considering the dynamic critical exponent which is different for different quantum systems.
The situation of the combined investigations of finite-size scaling and quantum-to-classical
crossover is similar to the one formulated in the framework of the phenomenological study of
finite-size scaling in anisotropic systems [15]. In this case one can investigate the interplay of
quantum and finite-size scaling. For example, in the case when the quantum effects are leading
compared with the finite-size effects (here this case will be called the ‘low-temperature’ case),
i.e.Lτ � L, from equation (2.1) to first order inLτ/L we expect to obtain

A(r, h, T , L) = LpτAτs (rL1/ν
τ , hL1/ντ ) +Lp+1

τ L−1AτLs (rL1/ν
τ , hL1/ντ ) (2.7)

instead of equation (2.6). This shows how the finite-size effects give rise to some corrections
to the quantum scaling. Following the same reasoning in the case of ‘very low temperature’
i.e.Lτ � L, when the finite-size contributions to the ground state energy and its derivatives
are dominant compared with those coming from the quantum effects, we find

A(r, h, T , L) = LpALs (rL1/ν
τ , hL1/ντ ) +L−zτ L

p+zALτs (rL1/ν
τ , hL1/ντ ) (2.8)

showing a correction to the zero-temperature finite-size scaling due to the temperature. These
ideas have been tested in the framework of the spherical quantum rotor model in [16,17]. We
will compare the scaling forms (2.7) and (2.8) with the available analytical results obtained
below.

3. The free energy and the gap equation

The quantumϕ4-model for which we are going to investigate its quantum critical and finite-
size scaling properties is (for a review of the applicability of this model in exploring quantum
critical phenomena, see [7])

H{ϕ} = 1

2

∫ 1/T

0
dτ
∫

dx
[
(∂τϕ)

2 + (∇σ/2ϕ)2 + r0ϕ
2 +

u0

2
ϕ4
]

(3.1)

whereϕ is a shorthand notation for the space–time-dependentn-component fieldϕ(x, τ ), u0

andr0 are model constants andT is the temperature. In (3.1) we assumed ¯h = kB = 1 and
the size scale is measured in units in which the velocity of excitationsc = 1. Here we will
consider periodic boundary conditions. This means

ϕ(x, τ ) =
√
T

V

∑
k,ωl

ϕ(k, ωl) exp(ik · x − iωlτ) (3.2)

whereωl = 2πT l (with l = 0,±1,±2, . . .) are the Matsubara frequencies for bosonic systems,
k is a discrete vector with componentski = 2πni/L, ni = 0,±1,±2, . . . and a cutoff3, and
V = Ld is the volume of the system. We note that the second term in the model transforms
into |k|σ ϕ2(k, ω) in the momentum representation, where the parameter 0< σ 6 2 accounts
for short-range and long-range interaction as well.

The partition function of the Hamiltonian (3.1) reads

Z =
∫
Dϕ exp(−H{ϕ}). (3.3)
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Note that in the low-temperature limit,T � 3, the integral overτ in H{φ} (see (3.1)) can be
extended over the whole temperature axis to give an effectiveϕ4-model ind + z dimensions
with a quantum control parameterr0. In the high-temperature limitT � 3 the upper limit
in the integral overτ is small. This offers us the possibility to write the Hamiltonian as a
classicalϕ4-model ind dimensions. Now using a standard decoupling procedure based on the
Hubbard–Stratonovich transformation in (3.3), which introduces an auxiliary fieldψ , one gets

Z = C
∫
DψDϕ exp

{
− 1

2

∫ 1/T

0
dτ
∫

dx

[
(∂τϕ)

2 + (∇σ/2ϕ)2 + r0ϕ
2 +ψϕ2 − 1

2u0
ψ2

]}
.

(3.4)

Using the fact that the fieldϕ is n-component we decompose the integral overϕ into an
n-dimensional Gaussian integral, which can be performed easily, leading to

Z = C
∫
Dψ exp

[
nβV

4u0
ψ2 − n

2
Tr ln[r0 +ψ − ∂2

τ −∇σ ]

]
. (3.5)

In the last expression we assumed that the fieldψ is time- and space-independent. For large
n we use the saddle point method to evaluate the integral overψ in (3.5). Finally, we obtain
the free energy per particleF = −(T /V )Tr lnZ in the momentum space

F = − 1

4u0
(φ − r0)2 +

1

V

∑
k

ln 2 sinh

[
1

2T

√
φ + |k|σ

]
(3.6a)

and the saddle point equation

φ = r0 + u0
T

V

∑
k,m

1

φ + (2πmT )2 + |k|σ (3.6b)

where, for convenience, we used the shifted parameterφ ≡ ψ + r0 instead ofψ itself.
Equations (3.6) are our starting point to explore the finite-size and quantum effects on

the bulk critical behaviour of the model (3.1). Let us note that in the particular case of short-
range forcesσ = 2, we recover the results of [18] utilized to investigate the finite-size scaling
when the quantum effects are absent. When the quantum effects are relevant, equation (3.6b)
was used in [19] in order explore the quantum critical behaviour and to calculate the critical
exponents.

To extract the physics from model (3.1), we calculate the susceptibilityχ . In the large-n
limit, we obtain

χ ≡
∫

ddx〈ϕ(x)ϕ(0)〉 = 1

φ
. (3.7)

This is a particular case of the general correlatorχ(k, ω) = 〈φ(k, ωn)φ(−k,−ωn)〉, defining
the dynamic susceptibility:

χ(k, ωn) = (φ + ω2
n + |k|σ )−1. (3.8)

From this expression one can deduce that the anomalous critical exponent measuring the
divergence of the correlation length at the quantum critical point isη = 2−σ and the dynamic
critical exponent isz = σ/2. The denominator of the dynamic susceptibility (3.8) has poles
in the complexk-plane atk = ±(−φ − (2πnT )2)1/σ . The closest pole to the origin is the
one corresponding ton = 0. This pole determines an exponential decay of the correlation
functions. So the correlation length turns out to be

ξ = φ−1/σ . (3.9)

From (3.7) and (3.9) one can deduce the simple ratio between the critical exponentsγ andν
to be equal toσ .
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To investigate the bulk quantum critical behaviour of the model (3.1) at zero temperature
we transform the sums in equations (3.6) into integrals, i.e.

T
∑
ωn

→
∫

dω

2π
and

1

V

∑
k

→
∫

dkk

(2π)d

to get

F0 = − 1

4u0
(φ − r0)2 +

∫
dω

4π

∫
ddk

(2π)d
ln[φ + ω2 + |k|σ ] (3.10a)

and

φ = r0 + u0

∫
dω

2π

∫
ddk

(2π)d
1

φ + ω2 + |k|σ . (3.10b)

These equations contain all the necessary information from which we can extract all that we
need regarding the critical behaviour at zero temperature. Here we will pay attention to the
scaling properties of the thermodynamic functions in the neighbourhood of the quantum critical
point given by

r0c = −u0

2

∫
ddk

(2π)d
|k|−σ/2. (3.11)

This integral is infrared convergent only ford > d<, whered< = σ/2 defines the lower critical
dimension. It is easy to calculate all the critical exponents for the model we are considering
here in the large-n limit by expanding the right-hand side of equation (3.10b) for smallφ. In
the expanded expression one can see a natural emergence ofd> = 3σ/2 as the upper critical
dimension. Here we will give some of these critical exponents:

γ = σ

d − d< ν = 1

d − d< . (3.12)

In the remainder of this paper we will investigate the effects of finite temperature and/or
spatial sizes on the bulk zero-temperature critical behaviour.

4. Finite temperature effects on the quantum critical behaviour

At finite temperature we obtain correction terms to the right-hand side of equations (3.10).
These are given by

1τ
F (T , φ) = −

kd

σ
√
π
0

(
d

σ

)
φ

d
σ

+ 1
2

∞∑
m=1

Kd
σ

+ 1
2
(m
√
φ

T
)

(m
√
φ

2T )
d
σ

+ 1
2

(4.1a)

for the free energy and

1τ
ξ (T , φ) =

2kd
σ
√
π
0

(
d

σ

)
φ

d
σ
− 1

2

∞∑
m=1

Kd
σ
− 1

2
(m
√
φ

T
)

(m
√
φ

2T )
d
σ
− 1

2

(4.1b)

for the saddle point equation. In expressions (4.1) we used the quantityk −1
d = 1

2(4π)
d
20(d/2)

andKν(x) is the MacDonald function (second modified Bessel function).
Combining equations (3.10b) and (4.1b) we get, in the bulk limit corresponding to the

geometry∞d ×Lzτ , the following scaling form (for the saddle point equation) for dimensions
d between the lowerd< and upper critical dimensionsd>:

xτ =u0kd
y
d/z−1
τ

2σ
√
π
0

(
d

σ

)[
0

(
1

2
− d

σ

)
+ 4

∞∑
m=1

Kd
σ
− 1

2
(myτ )

( 1
2myτ )

d
σ
− 1

2

]
. (4.2)
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Figure 1. Solution of equation (4.2) at
xτ = 0 as a function of the reduced space
dimensionality of the system.

Figure 2. Qualitative phase diagram of the
model under consideration in the vicinity of the
quantum critical point ford = σ . The dashed
curves are crossover lines. The thick line
shows the region where the system is ordered
atT = 0.

Here the scaling variables are defined byyτ =
√
φ/T andxτ = T 1−d/z(r0c − r0).

For fixedσ , the solution,y0, of (4.2) at the quantum critical point (xτ = 0) is a universal
number. An analytic solution of this equation cannot be obtained in the general case. Here we
will consider some particular cases:

y0 =



2π

σ
(d − d<) d − σ/2� 1

2 ln
1 +
√

5

2
d = σ

2π

√
d> − d

3σ
3σ/2− d � 1.

(4.3)

At xτ = 0, equation (4.2) can be solved numerically. The behaviour of the universal
constanty0 as a function of the reduced dimensionalityd/σ is given in figure 1. We see that
y0 depend upon the ratiod/σ in a universal way for all values ofσ smaller than or equal to 2.

The phase diagram of the model (here we are concerned with the critical line and crossover
lines) in the vicinity of the quantum critical point is determined by puttingφ = 0 in the saddle
point equation (3.6b). In the vicinity of the quantum critical point (3.11) the phase diagram is
determined by

r0c − r0c(T ) = 2

σ
kdT

(2d/σ−1)0

(
2d

σ
− 1

)
ζ

(
2d

σ
− 1

)
(4.4)

whereζ(x) is the Riemann zeta function. The crossover lines and the critical line are determined
by |r0c − r0| ∼ T 1/νz. The phase diagram for a particular cased = σ is presented in figure 2.
In the different regions of the phase diagram and for arbitrary dimensions the correlation length
has different behaviour.



880 H Chamati and N S Tonchev

Forxτ →∞ in the intervalσ/2< d < σ , the correlation length behaves like

ξ ∼
∣∣∣∣ T

r0 − r0c

∣∣∣∣1/(d−σ) . (4.5)

This expression shows that, whenT → 0+, the correlation length goes to infinity as quantum
effects become relevant. In this case there is no quantum phase transition for finite temperature.
For the second interval,σ < d < 3σ/2, one gets the behaviour

ξ ∼
(

T

r0 − r0c(T )
)1/(d−σ)

(4.6)

for r0 very close to but larger than the critical quantum parameterr0c(T ). Here we have a
phase transition at finite temperature and the critical exponents are those of the model in the
classical limit. They are

γ = σ(d − σ)−1 ν = (d − σ)−1. (4.7)

For r0 less than its critical value the correlation length is infinite.
Forxτ →−∞ the correlation length is temperature independent. For arbitrary dimension

d< < d < d> it is given by

ξ ∼ (r0c − r0)1/(d<−d). (4.8)

The particular cased = σ is very simple to handle. In this case equation (4.2) becomes
simpler. Its solution leads to

ξ−z = Tfξ (xτ ) (4.9)

for the inverse correlation length. Here

fξ (xτ ) = 2 arcsinh

[
1

2
exp

(
−σ

2

xτ

kσ

)]
(4.10)

is a scaling function, which simplifies in some limiting cases:

fξ (x) =



− σx
2kσ

x →−∞
1

2
ln

1 +
√

5

2
x = 0

exp

(
σx

2kσ

)
x →∞.

(4.11)

From equations (4.11) one can transparently see the different behaviour of the correlation
lengthξ(T ) in three regions:

(a) Renormalized classical regionwith exponential divergence asT → 0. In this region
the system displays characteristics of the ordered ground state. The thermal fluctuations
destroy long-range order at any finite temperature.

(b) Quantum critical regionwith ξ(T ) ∼ T −2/σ and crossover linesT ∼ |r0c− r0|σ/2. In this
region the system ‘notices’ that it is finite in the time direction.

(c) Quantum disordered regionwith temperature-independent correlation length asT → 0.
In this region the system has a gap in the spectrum.

The different regions are qualitatively shown in the phase diagram in figure 2.
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5. Quantum critical finite-size scaling

As the temperature is set to zero, equation (3.6) turns into

FL = 1

2V

∑
k

√
φ + |k|σ − 1

4u0
(φ − r0)2 (5.1a)

for the free energy and

φ − r0 = u0

2V

∑
k

1√
φ + |k|σ (5.1b)

for the saddle point equation.
Exploring the finite-size scaling in the quantum limit (T = 0) turns out to be a difficult

task because of the presence of the term|k|σ in the spectrum of the model. In other words,
the problem is how to handle the terms

√
φ + |k|σ in the expressions for the free energy and in

that of the saddle point equation (5.1). The solution to this problem was given in [20], where
two important identities facilitating the analysis of the finite-size scaling were presented (see
also appendix A).

For thed-dimensional system with spatial geometryLd−d
′ ×∞d ′ at zero temperature and

periodic boundary conditions imposed along the (d − d ′) finite-size directions with linear size
L of the system, the corrections to equations (5.1) are given by

FL = 1

2

∫
ddk

(2π)d
√
φ + |k|σ − 1

4u0
(φ − r0)2 − u0L

d+z1L
F (L

σφ) (5.2a)

and

φ = r0 +
u0

2

∫
ddk

(2π)d
1√

φ + |k|σ + u0L
z−d1L

ξ (L
σφ) (5.2b)

where for convenience we introduced the following functions:

1L
F (y) =

σ

8

1

(4π)d/2
∑
l

′
∫ ∞

0
dx exp

(
l2

4x

)
x−

σ
4− d

2−1G σ
2 ,1− σ

4
(−x σ

2 y) (5.2c)

and

1L
ξ (y) =

1

2

1

(4π)d/2
∑
l

′
∫ ∞

0
dx exp

(
l2

4x

)
x
σ
4− d

2−1G σ
2 ,

σ
4
(−x σ

2 y). (5.2d)

Here the primed summation over the vectorl is (d − d ′)-dimensional and the prime indicates
that the term corresponding tol = 0 is excluded. In the last equation we used the function [20]

Gα,β(x) = 1√
π

∞∑
k=0

0(k + 1/2)

0(αk + β)

xk

k!
. (5.2e)

Some properties of the functionsGα,β and1L
ξ (y) are discussed in appendices A and B,

respectively.

5.1. The finite-size shifted critical quantum parameter

It is well known from finite-size scaling theory that the critical value of the parameter driving
the phase transition is shifted due the effects of the finite sizes in the system. The aim of this
section is to evaluate the distance over which the critical quantum parameterr0c of the bulk
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system is shifted. For our concrete model this is obtained by substituting the parameterφ by
zero. The result is

r0c − r0c(L) = u0

2

0(d/2− σ/4)
(4π)d/20(σ/4)

∑
l

′
( |l|L

2

)−d+σ/2

(5.3)

and the (d − d ′)-dimensional sum in the right-hand side of equation (5.3) is convergent for
d ′ > d<.

In the opposite cased< > d ′, the right-hand side of (5.3) is divergent. Nevertheless,
the sum in equation (5.3) can be expressed in terms of the Epstein zeta function, which is a
generalization of the Riemann zeta function. The resulting Epstein function can be analytically
continued beyond its domain of convergence to give a physical meaning to equation (5.3) as
well. In this case the shifted ‘pseudocritical’ quantum parameterr0c(L) corresponds to the
centre of the rounding of the singularities of the thermodynamic functions, taking place in
the thermodynamic limit. This point has been investigated in detail in the framework of the
finite-size shift of the critical temperature for the spherical model in [21].

Let us also mention that the distance over which the critical quantum parameter is shifted
can be also expressed as

r0c − r0(L) = u0

2(2π)σ/2
πd

′/2

0(σ/4)
Cd,d ′,σ (5.4)

whereCd,d ′,σ is a the Madelung-type constant (cf appendix B).
One can see that the shifted critical quantum parameterr0c(L) is lower than its bulk critical

valuer0c for the different values ofd, d ′ andσ (which is the ‘normal case’, see [21]), while
the pseudocriticalr0c(L) is higher than the bulk critical quantum parameter. However, for the
boundary case whend ′ → d<, we find that the shift is infinite. This may be explained with
the aid of the behaviour of the Epstein zeta function at its poled ′ = d<. The shift in this case
is δr0 ∼ (d ′ − d<)−1 and the appearance of∓∞ is clear.

5.2. Finite-size scaling at zero temperature

In the neighbourhood of the quantum critical point, it is possible to write equations (5.2)
in the scaling forms (for dimensions between the lowerd< and the upperd> critical
dimensions)

FL − F0 = L−d−z
[
−DFd,σ y

d
σ

+ 1
2

L +
1

2u0
xLyL −1L

F (yL)

]
(5.5a)

for the singular part of the free energy and

xL = u0

2
Dd,σ y

d
σ
− 1

2
L + u01

L
ξ (yL) (5.5b)

for the saddle point equation, whose solution is related to the correlation length.
Here the scaling variables are given byxL = (r0c − r0)L

d−d< and yL = Lσφ,
and

Dd,σ = −2DFd,σ

(
d

σ
+

1

2

)−1

= kd

σ
√
π
0

(
d

σ

)
0

(
1

2
− d

σ

)
. (5.5c)

From equations (5.5) one can see that the singular part of the free energy and the correlation
length are universal scaling functions of the variablexL, i.e.

Fs ≡ F − F0 = L−d−zfF (xL) (5.6a)
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and

ξ = Lfξ (xL). (5.6b)

At the quantum critical point, i.e.xL = 0, the critical amplitudesfF (0)andfξ (0)are dependent
upon the geometry of the system and the range of the interaction.

(i) In the region corresponding toxL →∞ (in other words, if the quantum parameterr0
is less than but very close to its critical valuer0c), we obtain

ξ =
(

2
r0c − r0
u0Dd ′,σ

) 1
d<−d′

L
d−d′
d<−d′ . (5.7)

This shows how the correlation length tends to infinity as the size of the system becomes larger.
In the bulk system we recover the fact that the correlation length is infinite in the ordered phase
in the large-n limit.

(ii) In the case where the quantum parameterr0 coincides with its critical valuer0c, the
value of the scaling functionfξ (0) determines the critical amplitudes at the critical point. The
value of these critical amplitudes depends upon the dimensiond of the system, the number
of infinite sizesd ′ and the range of the interactionσ . It can be evaluated analytically in the
vicinity of the borders (determined by the critical dimensions) where the scaling is valid. The
scaling variable vanishes and the function1ξ(yL), in equation (5.5b), can be replaced by its
asymptotic form for small argument (equation (B.4a)). As a solution for the equation obtained
we find

ξ

L
=



(
2

(4π)
σ
4 (d − σ

2 )0(
σ
4 )Dd ′,σ

) 1
σ/2−d′

d − σ
2 � 1(

1

(4π)
3σ
4 ( 3σ

4 − d)0( 3σ
4 )Dd ′,σ

) 1
3σ/2−d′

3σ
2 − d � 1.

(5.8)

In some particular cases where the functionGα,β(x) becomes simple, namely in the cases
σ = 1 andσ = 2 (see appendix A), and for some special cases of the dimensionsd andd ′, it
is possible to solve equation (5.5b) numerically. Then one gets

ξ

L
=


0.624 798 for d = 1 d ′ = 0 σ = 1

1.511 955 for d = 2 d ′ = 0 σ = 2

2 ln

(
1 +
√

5

2

)
for d = 2 d ′ = 1 σ = 2.

(5.9)

(iii) The last case we consider here is the one corresponding to the values of the critical
quantum parameter smaller that the critical value, i.e.xL → −∞. The correlation length is
L-independent and is given by

ξ =
(

u0Dd,σ

2 (r0c − r0)
) 1
d−d<

. (5.10)

6. Interplay between quantum and finite-size effects

In this section we consider the case of a finite system at low temperatures. In other words, we
will investigate a system confined in the finite geometry of the general formLd−d

′ ×∞d ′ ×Lzτ
(here we will limit our discussion to the cased ′ < d<). In this geometry, in addition to the
correction terms to equation (3.10b) given in (4.1b) and (5.2d), we also have to add a correction
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term which accounts for the combined effects of finite sizes and finite temperature. This is
given by

ϒ(φ,L, T ) =
√

2L−d

(2π)
d+1

2

∑
m

∑
l

′
∫ ∞

0

dz√
z

exp

(
−zφ − T

2m2

4z

)
|l|−d8d/2−1,σ (zL

−σ |l|−σ )

(6.1a)

where

8ν,σ (y) =
∫ ∞

0
dxxν+1Jν(x)e

−yxσ (6.1b)

was introduced in [22]. In equation (6.1b), Jν(x) stands for the Bessel function.
The general equation obtained by combining equations (3.10b), (4.1b), (5.2d) and (6.1)

can be written in a scaling form whose solution gives the correlation length as a function
depending upon two scaling variables. This has the general form

ξ = Lfξ (xL, LT 1/z) = T −1/zfτ (xτ , LT
1/z). (6.2)

Actually, we see that there will be competition between the finite sizes and quantum effects
depending upon the quantityLT 1/z, as we will see later. The scaling form (6.2) is in agreement
with the predictions of section 2.

The solution of the saddle point equation for a system confined to a general geometry is
very difficult to obtain in an explicit form. Even in the two limiting cases of ‘low temperature’
(LT 1/z � 1) and ‘very low temperature’ (LT 1/z � 1) the asymptotics of the general equation
are very complicated. Nevertheless, these limits provide some useful information about
the behaviour of the system in the first or the latter case. Let us mention that the ensuing
mathematical equations simplify drastically in the case of short-range forces, i.e.σ = 2. In
this particular case, the analysis of the saddle point equation is identical to the one presented
in the framework of the quantum rotor spherical model (for details, see [17]). There is a
case when the saddle point equation takes a more simple form, namely the particular case of
long-range interaction corresponding toσ = 1. Even in this case the analysis of the critical
behaviour is very complicated.

Before doing this let us present the expressions for the asymptotic forms corresponding
to the limiting cases where the finite-temperature effects dominate the finite-size scaling and
vice versa.

6.1. Low-temperature regimeLT 1/z � 1

In this regime the finite-temperature corrections lead those coming from the finite size of the
system. The scaling form of the saddle point equation is given by

xτ = u0

2
Dd,σ y

1/zν
τ + u0

kd

σ
√
π
0

(
d

σ

)
y1/zν
τ K2

(
d

σ
− 1

2
; yτ

2

)
+

2u0

(4π)d/2
y2(d/σ−1)
τ Kσ

(
d

2
− 1; yL

2

)
(6.3a)

where we used the functions

K2(ν; y) = 2
∞∑
m=1

(my)−νKν(2my) (6.3b)

and

Kσ (ν; y) =
∑
l

′
∫ ∞

0
dx

xν+1

1 +xσ
Jν(2ylx)

(yl)ν
. (6.3c)
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The latter function has been proposed in [23], where the finite-size scaling properties of the
spherical model were discussed. The analytical properties of this function are considered in
the same reference.

The functionK2(ν; y) introduced by equations (6.3) is exponentially decreasing for large
values of its argumenty (for fixed finite ν). The second function, i.eKσ (ν, y), is decaying
exponentially only in the case of short-range interactionσ = 2. For the case of long-range
interaction corresponding toσ < 2 its asymptotic form decreases by a power law. The two
functions are identical in the caseσ = 2.

Let us recall that the temperature enters in the right-hand side of equation (6.3a) through
the relationyτ =

√
φ/T . The last term appearing in the scaling form (6.3a) is a correction

to the bulk system at low temperature resulting from finite-size effects. The temperature-
independent part of this term is nothing but the finite-size corrections to the bulk system in
its classical limit, i.e. the case when the quantum effects are irrelevant. Now, in the case of
short-range interaction (σ = 2), this equation has been analysed previously [17]. In this case
we getexponential corrections. In the case of long-range interactions we havepower-law
corrections. This seems to be a general characteristic for systems with long-range interaction
(for the case of the spherical model, see [23,24]).

In the particular case of the two-dimensional system with short-range interactiond = σ =
2, we get the solution

ξ−1 ≈ θT + (2− d ′)
√

2π

5θ

√
T

L
exp(−T Lθ) (6.4)

whereθ = 0.962 424 is a universal constant. This universal form agrees with the predictions
made in section 2.

Let us quote here the result for the shift of critical quantum parameter from its bulk value.
It is

r0c − r0c(L, T ) = 2

σ
u0kdT

(2d/σ−1)0

(
2d

σ
− 1

)
ζ

(
2d

σ
− 1

)
+
u0

2T

0(d/2− σ/2)
(4π)d/20(σ/2)

∑
l

′
( |l|L

2

)−d+σ

. (6.5)

The first term in this equation is the finite-temperature shift of the critical quantum parameter
and the second term is nothing but the finite-size shift in the classical limit (i.e. when the
quantum fluctuations are negligible in the system) divided by the temperature.

6.2. Very low-temperature regimeLT 1/z � 1

Here the finite temperature corrections are negligible in comparison with those coming from
the finite-size effects. In this case the scaling form of the saddle point equation turns into

xL = u0

2
Dd,σ y

d/σ−1/2
L + u01

L
ξ (yL) + u0y

d ′/σ−1/2
L

kd ′

σ
√
π
0

(
d ′

σ

)
K2

(
d ′

σ
− 1

2
; yL

2

)
. (6.6)

From this equation we can see that the finite-temperature corrections to the finite system
at zero temperature are coming mainly from thed ′ infinite dimensions. In this case the
temperature corrections areexponential. In the particular case of a two-dimensional system
with short-range interactiond = σ = 2 confined to a strip geometry (d ′ = 1) at the quantum
critical point, we get

ξ−1 ≈ θ

L
+

√
2π

5θ

√
L

T
exp

(
− θ

T L

)
. (6.7)
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In the case when the system is confined to a block geometry (d ′ = 0), we have

ξ−1 ≈ �

L
+

1

L

[
1

2�
+
�

2

∑
l

′
(�2 + 4π2l2)−3/2

]−1

exp

(
− �

LT

)
(6.8)

where� = 1.511 955 is a universal constant. Both results (6.7) and (6.8) are in agreement
with the scaling predictions of section 2.

The shift of the critical quantum parameter in this case is given by

r0c − r0c(L, T ) = u0

2

0(d/2− σ/4)
(4π)d/20(σ/4)

∑
l

′
( |l|L

2

)−d+σ/2

+
2

σ
kd ′L

d−d ′T (2d
′/σ−1)0

(
2d ′

σ
− 1

)
ζ

(
2d ′

σ
− 1

)
. (6.9)

The first term of the right-hand side of equation (6.9) is discussed in section 5.1. The
second term is the correction to the finite-size shift coming from the temperature. It is just the
finite temperature shift of ad ′-dimensional system multiplied by the volume of a(d−d ′)-finite
hypercube with linear sizeL.

6.3. Short-range caseσ = 2

The equation for the saddle point case reads

r0c − r0 = u0

(4π)
d+1

2

0

(
1− d

2

)
φ(d−1)/2 +

φ(d−1)/2

(4π)
d+1

2

∑
m,l

′K(d−1)/2[φ1/2(m2/T 2 +L2l2)]

[φ1/2(m2/T 2 +L2l2)](d−1)/2
.

(6.10)

This is the simplest form one can get for the saddle point equation. In this case the dynamic
critical exponentz, which measures the anisotropy isz = 1. The system is symmetric with
respect to the changeL↔ T −1.

The general analysis of equation (6.10) follows the one presented in the framework of the
quantum rotors model. Here we will not discuss this point since one can obtain the details
in [17].

7. Summary

TheO(n) vectorϕ4-model is extensively used in the analysis of the critical phenomena because
of its direct relevance to the physical reality. In the limitn→∞ it adds the property of exact
solvability at any dimension. This makes it very attractive for the exploration of the the scaling
properties of quantum critical phenomena as well as finite-size scaling theory.

In this paper we presented investigations regarding the finite-size scaling of theϕ4-model
in the vicinity of its quantum critical point. The striking characteristic of the model is the
presence of long-range interaction decaying at large distancesr with a power law asr−d−σ .
We considered the model confined to the general geometry of the formLd−d

′ × ∞d ′ × Lzτ ,
whereL is the spatial size of the system,Lτ ∼ T −1/z andz is the dynamic critical exponent.

The results were obtained by considering the temperature which governs the crossover
between the classical and the quantum critical behaviour as an additional temporal dimension.

A detailed investigation of the alteration of the zero-temperature critical behaviour of the
model due to the finite temperature was performed. For dimensionsd< < d < d>, we studied
the critical behaviour of the bulk model in the three different regions: classical renormalized,
quantum critical and quantum disordered with different behaviours of the correlation length
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as function of the temperature. The behaviour of the correlation length in these different
regions as a function of the dimensionality was calculated. Also, some critical amplitudes
were evaluated.

The large-L behaviour and the scaling forms accounting for the finite-size effects were
derived for the free energy and the saddle point equation. For the finite-size shift of the
the critical quantum parameter, we foundr0c − r0 ∼ L−1/ν in accordance with the general
postulates of finite-size scaling. For some particular cases the behaviour of the correlation
length and some critical amplitudes were evaluated.

The study of the general case when the system is confined to the general geometry
Ld−d

′ × ∞d ′ × Lzτ , i.e. when the temperature as well as the sizes of the systems are finite
turns out to be a very difficult task because of the high anisotropy of the system due to the
parameterσ . Nevertheless, one can make interesting deductions in some limiting cases: (i) in
the low-temperature regime (LT 1/z � 1), the finite-size corrections to the low-temperature
behaviour areexponentiallysmall in the case of short-range interaction and are decreasing
with apower lawin the case of long-range interaction; (ii) in the very low-temperature regime
(LT 1/z � 1), however, the finite temperature corrections to the finite-size behaviour are always
exponentiallysmall.

Here, we confined our investigations to the static critical properties of the model, believing
that the spherical limit (n = ∞) provides a useful tool for studying quantum critical phenomena
in dimensionsd > σ/2. The dynamic properties are not well described in this limit and require
loop corrections (see, e.g., [25] in the case of the nonlinear quantum sigma model).

Though derived for the special case of theϕ4 model with long-range interaction in the
large-n limit, the results obtained here are also expected to hold for many other cases. For
example, recently, a model suitable to handle the joint description of classical and quantum
fluctuations in an exact manner was considered in a number of publications [20,26–30]. This
model is a modification of theϕ4-lattice model used extensively in the investigation of the
critical behaviour of the structural phase transitions [31], in the spirit of the self-consistent
phonon approximation method [26].
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Appendix A. Some properties of the functionGα,β(z)

The functionsGα,β(z) were introduced in [20] in order to investigate the zero-temperature
finite-size scaling of an anharmonic crystal with long-range interaction at zero temperature.
They are entire function series of finite order of growth defined by

Gα,β(t) = 1√
π

∞∑
k=0

0(k + 1/2)

0(αk + β)

tk

k!
α > 0 β > 0. (A.1)

One of the most striking properties of this function is that it obeys the following identity:

1√
1 + z

=
∫ ∞

0
dxe−xxβ−1Gα,β(−xαz) (A.2)

which is obtained by means of term-by-term integration of the series (A.1). The identity (A.2)
lies in the basis of the mathematical investigation of finite-size scaling in quantum systems
with long-range interaction.
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In some particular cases the functionsGα,β(z) reduce to known functions. Here we will
give some examples which are of interest for us in this paper:

G1,1/2(z) = ez√
π

(A.3a)

G1/2,1/4(−z) = 1

4
√
π
U

(
3

4
,

1

2
, z2

)
for z > 0 (A.3b)

and

G1/2,3/4(−z) = 1√
π
U

(
1

4
,

1

2
, z2

)
for z > 0 (A.3c)

whereU(a, b, z) is the confluent hypergeometric function [32].
If we set in the identity (A.2)z = y−α, y > 0, andx = ty, we will obtain the Laplace

transform

yα/2−β

(1 +yα)1/2
=
∫ ∞

0
dxe−yt tβ−1Gα,β(−tα) (A.4)

from which we derive a new identity by settingβ = α/2:

(1 + zσ )−1/2 =
∫ ∞

0
dxe−xzxσ/2−1Gσ,σ/2(−xσ ). (A.5)

With the aid of the last equation we obtained the large-L asymptotic behaviour (5.2b) from
equation (5.1b).

The integral representation of the functionsGα,β(z) is obtained with the aid of the Hankel
integral for the inverse of the gamma function

1

0(z)
= 1

2π i

∫
C

euu−z dz (A.6)

where the integration contourC is a loop which starts and ends atx = −∞ and encircles the
origin in the positive sense:−π 6 argz 6 π onC [32]. This enables us to get the result

Gα,β(z) = 1

2π i

∫
C

dv
evv−α/2+(1−β)

(vα − z)1/2 . (A.7)

The last result is valid only forα < 1. The integrand in (A.7) has a branch point atv = 0. A
more complete and detailed analysis of the functionGα,β(z) will be presented in a subsequent
paper. This integral representation is helpful for obtaining the asymptotic behaviour for
z→∞.

In the following we will investigate the asymptotic behaviour of the functionsGα,β(−z)
for a real argumentz. This may be performed by the use of the series

1√
x + t

= 1√
2x

p∑
k=0

0(k + 1/2)

k!

(
− t
x

)k
+

1√
2x

∞∑
k=p

0(k + 1/2)

k!

(
− t
x

)k
(A.8)

for x � t . The second part of the right-hand side of the last equation is nothing but
the expansion in series of the hypergeometric function2F1(a, b; c, x) multiplied by some
coefficients. So, by simple rearrangement, equation (A.8) takes the form

1√
x + t

= 1√
2x

p∑
k=0

0(k + 1/2)

k!

(
− t
x

)k
+

1√
πx

(
− z
x

)p+1 0(p + 3/2)

0(p + 2) 2
F1

(
1, p +

3

2
;p + 2,− z

x

)
. (A.9)
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Using the integral representation (A.7) and the identity (A.9) we get the asymptotics (for
p > 1)

Gα,β(−x) =
p∑
k=0

(−1)k
0(k + 1/2)

k!
√
π

x−k−1/2

0(β − α(k + 1/2))
+O(x−p−3/2) x → +∞.

(A.10)

In the particular caseβ = α/2, the last equation reduces to

Gα,α/2(−x) ' − x−3/2

20(−α) . (A.11)

Appendix B. Asymptotics of the function∆ξ(y)

Here we present the asymptotic behaviours of the functions1ξ(y), given in (5.2d) for small
and largey. These functions are defined by

1ξ(y) = 1

2
(4π)−d/2

∑
l

′
∫ ∞

0
dx exp

(
− l

2

4x

)
xσ/4−d/2−1Gσ/2,σ/4(−xσ/2y). (B.1)

With the aid of the Jacobi identity for ad-dimensional lattice sum∑
l

e−xl
2 =

(π
x

)d/2∑
l

e−π
2l2/x (B.2)

we transform expression (B.1) into

1ξ(y) = 1

2
Dd ′,σ y

d ′/σ−1/2 +
1

2

π
d′
2

(2π)
σ
2

∫ ∞
0

dxxσ/4−d
′/2−1G σ

2 ,
σ
4

(
−y x

σ
2

(2π)σ

)
×
[∑

l

′
e−xl

2 −
(π
x

)d/2 ]
. (B.3)

In order to be able to get a reasonable expression for the integral in the last equation we have to
avoid the divergence in the square brackets. To this end we add and subtract from the function
Gα,β(x) its small asymptotic behaviour to the first order (see appendix A), which enables us to
write (after some algebra)

1ξ(y) = 1

2
Dd ′,σ y

d ′/σ−1/2 − 1

2
Dd,σ y

d/σ−1/2 +Wd,d ′,σ (y) +
1

(2π)σ
πd

′/2

0(σ/4)
Cd,d ′,σ (B.4a)

where we used the notations

Wd,d ′,σ = πd
′/2

(2π)σ
∑
l

′
∫ ∞

0
dxxσ/4−d

′/2−1e−xl
2

[
Gσ/2,σ/4

(
− x

σ/2y

(2π)σ

)
− 1

0(σ/4)

]
(B.4b)

Cd,d ′,σ =
∑
l

′
∫ ∞

0
dxxσ/4−d

′/2−1e−xl
2 − π(d−d ′)/2

∫ ∞
0

dxxσ/4−d
′/2−1

= lim
λ→0

{∑
l

′
0

(
σ

4
− d

′

2
, λl2

)
|l|d ′/2−σ/4

−
∫ ∞
−∞
· · ·
∫ ∞
−∞

dx0

(
σ

4
− d

′

2
, λl2

)
|l| d

′
2 − σ

4

}
. (B.4c)

Here0(α, x) is the incomplete gamma function. The expression in equation (B.4c) is a
generalization of the Madelung-type constant, and isy-independent. Indeed, this equation
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defines the finite-size shift of the critical quantum parameterr0c at zero temperature. It is easy
(following [17]) to show that equations (B.4c) and (5.3) are equivalent.

For smally the asymptotic behaviour of1ξ(y) is given by the first term in the right-hand
side of equation (B.4a).

For largey the asymptotics of the function1ξ(y) are obtained by substituting the large-
x behaviour of the functionsGα,β(x) from equation (A.10) in definition (B.1). After some
calculations one ends up with

1ξ(y) ' −1

4
y−3/2 (4π)

σ/2

0(−σ/2)0
(
d + σ

2

)∑
l

(
1

π |l|
)d+σ

2

. (B.5)
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